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Introduction 

Heat stress is the leading cause of weather-related fatalities within the United States. 1 Since 
1900, annual New Jersey temperatures have increased by about 4 °F (as of December 2021), 
driven by increased global temperatures from greenhouse gas emissions, 2,3 and temperatures are 
projected to continue increasing throughout the remainder of the 21st century. 3,4 With high 
greenhouse gas emissions, it is likely that about 70% of New Jersey summers will be warmer 
than any before 2006 by the middle of the 21st century. And by the end of the 21st century, about 
90% of summers are projected to be warmer than any before 2006. 5 Increased summer 
temperatures will likely increase incidences of heat related illness, hospital admissions, and 
mortality among vulnerable populations. 6 Similarly, it is expected that heatwaves will become 
more frequent and longer throughout New Jersey by the middle and end of the 21st century. 7  

Given these trends, it is important to identify the locations of communities and populations that 
experience increased health vulnerability to extreme and prolonged heat within New Jersey for 
potential interventions, such as increasing urban tree canopy cover. 8 Vulnerability to heat is 
broadly defined as degree to which a community or individual is prone to experience the 
negative outcomes of a high heat event, such as increased injury or mortality rates. One 
limitation in identifying these communities within New Jersey is a lack of heat-related health 
outcome data. This lack is driven by few documented historical incidences of heat-related 
emergency department (ED) visits and mortality in New Jersey. Additionally, high heat events 
tend to exacerbate other health issues, and heat is not necessarily attributed as a primary cause of 
a resultant ED visit or mortality. 9  

Therefore, this report identifies communities experiencing vulnerability to extreme heat by 
utilizing social and environmental indicators that exacerbate heat-related mortality and morbidity 
(worse health outcomes) as identified in scientific and public health literature. Multiple studies 
and reports have used heat vulnerability indicators to generate heat vulnerability indices (HVIs) 
to identify regions of greatest risk to extreme heat at the national 10, state 11–15, and metropolitan 

mailto:James.Shope@rutgers.edu


16–23 scales. These indicators include physical characteristics, such as the percent of the land area 
with impervious surfaces, and community aspects, such as the proportion of the population 
above the age of 65, that contribute to disproportionate community morbidity and mortality from 
an extreme heat event.  

A composite HVI was generated using existing census data, natural and built environment data, 
summer temperature records, and community health data informed by the methodology utilized 
for New York City 18, the Greater Boston Area 16, and the States of Wisconsin 12,13 and Vermont. 
15 The purpose of this effort is to help identify the regions within New Jersey that may be most at 
risk from extreme heat today and bear special consideration in planning for future climate 
change.  

 

Methods 

Data Sources  

Indicator variables contributing to the New Jersey HVI and their sources are listed in Table 1. 
These indicators were selected by reviewing existing literature and the technical documentation 
provided for the development of HVIs in other locations within the U.S. 10–23. Many potential 
indicators were identified in this investigation, but not all are listed in Table 1. Multiple 
indicators represented a shared aspect of vulnerability, such as median household income and the 
percent of a community living below the poverty line representing financial resilience to extreme 
heat. To reduce redundancy, indicators sharing the same conceptual effects on vulnerability and 
health outcomes relating to extreme heat were reduced to the one that was found most 
consistently across other HVIs. Additionally, indicators were compared using the Spearman rank 
correlation coefficient (ρ). Indicators with a very high correlation (ρ > 0.8) with others were 
reduced to one indicator, again selecting the one most consistent in other HVIs, or were 
synthesized into a single variable to generate the list in Table 1.  

In reviewing the literature, there were indicators that appear in some HVIs and not others, such 
as the percentage of households with single parent families. 16 Indicators were selected based on 
either appearance in the documentation for multiple HVIs or a well-established relationship to 
heat health outcomes in the literature. For example, the proportion of single parent households 
only appeared in one of the reviewed HVIs and was therefore removed from this analysis. 
Another example is high blood pressure. While some HVIs included high blood pressure, 
presumably as a proxy for cardiovascular disease, the literature does not physiologically relate 
prevalence of hypertension itself to increased morbidity and mortality during an extreme heat 
event. 24,25 However, other cardiovascular diseases are exacerbated with heat stress. 24 As 
cardiovascular diseases are exacerbated by high heat, but hypertension does not appear to be one 
of them, it was removed from the analysis and replaced with coronary heart disease prevalence, 
26 the only other cardiovascular disease for which there are easily accessible public data at the 
census tract resolution. 



Finally, the geography of the selected indicators was summarized to the 2010 decennial census 
tracts, despite the 2020 census having been completed. Some of the selected datasets, such as the 
census tract-level chronic health data, have not yet been updated to the new 2020 decennial 
census geography and new census tract divisions at the time of writing. The HVI geography will 
be updated in future iterations as these data become available.  

The selected indicators were classified into three groups (Table 1): Exposure (4 indicators), 
Sensitivity (8 indicators), and Adaptive Capacity (6 indicators). Exposure represents the physical 
environmental stressors or characteristics that lead to worse health outcomes at the individual 
and community level. Sensitivity is the degree to which individual or communities may be 
affected by extreme heat. Adaptive capacity is the ability of the individual or community to 
respond to and take action to mitigate the hazards associated with extreme heat and recover from 
an extreme heat event. Indicators considered and not incorporated into the HVI are listed in 
Appendix A.  

 

Table 1. List of indicators included in the New Jersey heat vulnerability index with data sources, 
geographic scales, and notes regarding the individual measurements.  

Indicator Data Source Geography Notes and Rationale 
Exposure 

Impervious 
Cover to 
Canopy Cover 
Index 

National 
Land Cover 
Database 
2019 Percent 
Developed 
Imperviousn
ess 
(CONUS) 27 
and 
2016 USFS 
Tree Canopy 
Cover 
(CONUS) 28 

Census 
Tract 

Impervious surfaces absorb solar radiation and 
reradiate the energy as heat, which can cause 
elevated temperatures in urban areas compared 
to the surrounding rural areas. 29 Higher 
prevalence of canopy cover, conversely, is 
linked to cooler temperatures relative to areas 
lacking tree canopy cover. These two metrics 
are highly correlated and were combined into a 
single index by the formula: 
 
-1*([Mean Canopy Coverage * Tract Area1] – 
[Mean Impervious Coverage * Tract Area2]) / 
([Mean Canopy Coverage * Tract Area1] + 
[Mean Impervious Coverage * Tract Area2]) 
 
The mean canopy and impervious surface 
coverage were calculated for each census tract 
before computation. “Tract Area” appears 
multiple times as the total area pixels within 
each coverage layer differs minutely due to 
raster pixels not being aligned and this 
producing slightly different areas when 
calculated in ArcGIS. The subscript 1 denotes 
the tract area calculated for canopy cover and 2 
for impervious cover. 



 
The index was multiplied by -1 so that higher 
values correspond to more impervious 
coverage area and, therefore, a greater risk of 
an urban heat island.  
 

Historical 
Annual Fine 
Particulate 
Matter 
(PM2.5) 
Concentration 

Centers for 
Disease 
Control and 
Prevention 
(CDC) 
National 
Environment
al Public 
Health (EPH) 
Tracking 
Network30 
 
U.S. 
Environment
al Protection 
Agency 
(EPA) 

County Particulate matter compounds with extreme 
heat to increase rates of cardiovascular- and 
respiratory-related ED visits and mortality. 31,32 
The indicator value is computed as the five-
year average from 2014 to 2018 for each 
county. County values were applied to census 
tracts within each county limit.  

Historical 
Mean Annual 
Number of 
Ozone (O3) 
Exceedance 
Days 

CDC EPH 
Tracking 
Network 30 
 
U.S. 
Environment
al Protection 
Agency 
(EPA) 

County Ozone production increases at higher 
temperatures, which can be hazardous for 
individuals with respiratory issues and can 
increase mortality. 31,32  The indicator value is 
computed as the five-year average of standard 
exceedance days from 2014 to 2018 for each 
county. County values were applied to census 
tracts within each county limit. The number of 
exceedance days was selected as the indicator 
as O3 concentrations were not readily available 
at the county level through the EPH Tracking 
Network.  

Summer 
Average 
Temperature 
Normals 
(1991 to 
2020) 

Oregon State 
University’s 
Parameter-
elevation 
Regressions 
on 
Independent 
Slopes 
Model 
(PRISM) 33 

Census 
Tract 

This indicator is the average summer (June–
August) temperature at each census tract 
centroid for the years 1991 to 2020. Average 
summer temperatures are included to account 
for local temperatures and climates that may 
modify the urban heat island effect, such as 
potentially cooling/moderating sea breezes 
along coastal regions. 34 

Sensitivity 



Percent of 
Population 
Over the age 
of 65 

U.S. Census 
American 
Community 
Survey 
(ACS) 5-
Year 
Estimates 
(2015–2019)  

Tract Individuals over the age of 65 are at an 
increased risk for heat related ED visits, 
mortality, and other heat-related issues during 
extreme heat events. 29,35–37 
 

Percent of the 
Population 
Under the age 
of 5 

U.S. Census 
ACS 5-Year 
Estimates 
(2015–2019) 

Tract Young children are at risk for heat illnesses 
due to a reduced ability to thermoregulate and 
are dependent on caregivers for reduction to 
extreme temperatures. 36,38 

Percent of 
Population 
with a 
Disability 

U.S. Census 
ACS 5-Year 
Estimates 
(2015–2019) 

Tract Persons with mobility or cognitive difficulties 
may have greater difficulty responding and 
adapting to extreme heat conditions and 
climate change. 39 

Percent of 
Housing 
Structures 
Built Before 
1960 

U.S. Census 
ACS 5-Year 
Estimates 
(2015–2019) 

Tract Older homes are less likely to have central air 
conditioning 22 and were used as a proxy for 
potential air conditioning prevalence. Older 
buildings can also have reduced thermal 
insulation. 11 

Percent of 
Workers in 
Occupations 
likely 
requiring 
Outdoor 
Labor 

U.S. Census 
ACS 5-Year 
Estimates 
(2015–2019) 

Tract Outdoor workers are likely to experience 
increased heat exposure and are more 
vulnerable to heat illness and mortality. 31,39 
Here, occupations with a likely outdoor labor 
component are defined as Census ACS 
occupation categories of: Building and 
grounds cleaning and maintenance 
occupations; Construction and extraction 
occupations; Farming, fishing, and forestry 
occupations; Installation, maintenance, and 
repair occupations; Material moving 
occupations; Protective service occupations; 
and Transportation occupations. 

Percent of 
People Living 
Alone 

U.S. Census 
ACS 5-Year 
Estimates 
(2015–2019) 

Tract Communities and individuals with limited 
social connection are more vulnerable to heat, 
especially the elderly. Reduced contact with 
family or friends may reduce protective 
behaviors or heat hazard/illness identification. 
10,40 

Crude 
Prevalence of 
Asthma 
Among 
Adults (≥ 18 
years) (2018) 

CDC EPH 
Tracking 
Network 30 
 
CDC 
Behavioral 

Tract 
(modeled) 

Extreme heat and heightened air pollution 
(such as ground level ozone) during high heat 
events can exacerbate chronic respiratory 
issues and increase hospitalization rates. 24,41 



Risk Factor 
Survey 
System 
(BRFSS) and 
Population 
Level 
Analysis and 
Community 
Estimates 
(PLACES) 
 

Crude 
Prevalence of 
Diabetes 
Among 
Adults (≥ 18 
years) (2018) 

CDC EPH 
Tracking 
Network 30 
 
CDC BRFSS 
and PLACES 
 

Tract 
(modeled) 

Extreme heat increases the risk/rate of hospital 
visits for diabetes related issues. 10,39,42 

Crude 
Prevalence of 
Coronary 
Heart Disease 
Among 
Adults (≥ 18 
years) (2018) 

CDC EPH 
Tracking 
Network 30 
 
CDC BRFSS 
and PLACES 
 

Tract 
(modeled) 

Heightened temperatures can increase the risk 
of morbidity mortality associated with 
coronary heart disease, 26 though some studies 
43 have indicated that higher moderate 
temperatures rather than extreme temperatures 
have a stronger effect on hospitalizations from 
coronary heart disease.  

Adaptive Capacity 
Percent of the 
Population 
Living below 
the Poverty 
Line 

U.S. Census 
ACS 5-Year 
Estimates 
(2015–2019) 

Tract People with lower incomes and living below 
the poverty line are associated with greater 
vulnerability to heat stress and a limited 
capacity to adapt to and recover from extreme 
heat events. 29,35 

Percent of the 
Working Age 
population 
that is 
Unemployed 

U.S. Census 
ACS 5-Year 
Estimates 
(2015–2019) 

Tract Unemployment, not including retirement or 
voluntary unemployment, is associated with 
greater vulnerability to climate hazards. 11 

Percent of the 
population 
Speaking 
English less 
than “Very 
Well” 
(Linguistic 
Isolation) 

U.S. Census 
ACS 5-Year 
Estimates 
(2015–2019) 

Tract Limited English proficiency can limit the 
communication of heat hazard warnings when 
only communicated in English and limit the 
employment of protective measures in 
linguistically isolated during heat related 
emergencies. 11,21 



 

Composite HVI calculation 

Prior to HVI computation, each indicator was transformed to approximate a normal distribution 
throughout the state. This process worked to limit the effect of the data outliers and a skewed 
distribution. 15 While extreme outliers were rare, many of the indicator distributions were heavily 
skewed, where the bulk of the data is clustered on one end of the distribution and there is a long 
tail of either higher or lower values causing the data distribution to asymmetric. For example, the 
indicator of proportion of people living below the poverty line per census tract for the entire state 
was positively skewed (Figure 1 [left panel]).  

Each indicator was transformed to fit a more normal distribution utilizing a Box-Cox 
transformation. 46 The transformation tests a number of exponents (λ) from -5 to 5 to determine 
an optimal value to best approximate a normal curve by finding which λ value maximizes the 
log-likelihood function. The transformation is defined as: 

𝑦𝑦(𝜆𝜆) =  �
𝑦𝑦𝜆𝜆 − 1
𝜆𝜆

,          𝑖𝑖𝑖𝑖 𝜆𝜆 ≠ 0

log(𝑦𝑦),           𝑖𝑖𝑖𝑖 𝜆𝜆 = 0
 

 

Where y(λ) is the transformed indicator and y is the original indicator. Additionally, this 
formulation of the Box-Cox transformation is only for positive values. In instances were negative 
or zero values were present, a constant was added to all values of the indicator such that the 
minimum value became 0.0001. Figure 1 displays histograms comparing the distributions of the 

Percent of the 
Population 
over Age 25 
without a 
High School 
Degree or 
Equivalent  

U.S. Census 
ACS 5-Year 
Estimates 
(2015–2019) 

Tract Individuals without a high school education 
are associated with greater vulnerability to heat 
and heat-related mortality. 10,35 

Percent of 
Population 
that is Non-
White 
(including 
Hispanic 
and/or Latino 
Ethnicity) 

U.S. Census 
ACS 5-Year 
Estimates 
(2015–2019) 

Tract Predominately non-white communities are 
subject to greater vulnerability to natural 
hazards, including extreme heat due to social 
inequities. 39,44 

Percent of 
Population 
without 
Health 
Insurance 

U.S. Census 
ACS 5-Year 
Estimates 
(2015–2019) 

Tract Lower rates of health insurance can reduce 
hospital and emergency service usage, leading 
to greater morbidity and mortality from natural 
hazards, including extreme heat. 45 



percent living below the poverty line by census tract before and after transformation. Note that 
prior to transformation the distribution is heavily skewed and after the Box-Cox transformation, 
the histogram more closely resembles a normal distribution. It is important to note that this 
transformation does not affect the relative rank of each census tract within the indicator but 
modifies the relative magnitudes of the values to approximate the normal distribution.  

 

Figure 1. Histograms comparing the distribution of the percent of people living below the 
poverty line by census tract (left) to the same data after a Box-Cox transformation for normality 
(right). Note the untransformed data is heavily skewed to the right, a long tail to the right of the 
distribution peak, while the transformed data better approximates a normal distribution.  

 

Once transformed for normality, each indicator was standardized and mean centered. To 
standardize the indicator, each was converted into a z score to ensure all indicators were on the 
same scale and eliminate any effects from comparing different units. 11–13,15,16,47 The z score 
formulation is given as: 

𝑧𝑧 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 =
𝑥𝑥𝑖𝑖 −  𝜇𝜇
𝜎𝜎

  

Where the subscript i represents the ith census tract, xi is the value of the indicator at census tract 
i, µ is the mean of the indicator, and σ is the standard deviation of the indicator. The z score 
values were mean centered, subtracting the mean z score from all values of the indicator, such 
that the mean was zero and the values represented the number of standard deviations above or 
below the mean of the transformed indicator. 



Within each vulnerability group (exposure, sensitivity, and adaptive capacity), the transformed 
indicators were averaged to generate a composite group score. These scores were again z score 
transformed and mean centered to ensure that each group score was in the same units (standard 
deviations above and below the mean) and averaged into the final composite HVI. The full 
methodology is described visually in Figure 2.  

 

Figure 2. Schematic flowchart detailing composite heat vulnerability index development from 
indicator variables for each indicator group: Exposure, Sensitivity, and Adaptive Capacity. Grey 
shaded regions with a dashed boarder indicate data transformations and averaging procedures.   

 

Each indicator, group score, and the composite HVI were aggregated into a single data table. To 
aid in interpretation, each indicator, score, and the HVI values were divided into 20th percentile 
bins and ranked 1 to 5 to indicate their magnitude/vulnerability relative to other census tracts 
throughout the state. 1 indicates the lowest percentile bin for the value, coinciding for the lowest 
vulnerability category for the variable, and 5 indicates the highest percentile bin, or the highest 
vulnerability category for the variable. For example, a census tract would indicate a “1” for a 
relatively low percentage of its population that is aged 65 and over and “5” if the percentage of 
its 65 and over population is within the highest 20th percentile for the state. Finally, correlation 
matrices between indicator and between indicator group scores for further analysis can be found 
in Appendix B.   

 

Usage 

While the HVI and indicator data set may be used in numerous ways, practitioners may find it 
the most useful to “work backwards” from a census tract’s HVI score to assess vulnerability. The 
HVI highlights the regions within the state most vulnerable to extreme heat based on the selected 
indicators. To determine which community characteristics (indicators) contribute the most to the 



vulnerability score, a user can view the relative ranks of the group scores (Exposure, Sensitivity, 
and Adaptive Capacity), see which values are highest (4s and 5s) and then look at the indicators 
within those categories to see which display the highest relative ranks.  

For example, for Census Tract 5003, in Gloucester County, the HVI score is 4, indicating a 
“Moderate High” vulnerability to extreme heat compared to other census tracts throughout the 
state. In looking at the group scores, this tract has high values of 4 in the Exposure and 
Sensitivity Categories. The user can then explore which indicators contribute the most to the 
high composite scores, such as high normal summer temperatures, a relatively high percentage of 
its population that is disabled, or a relatively high asthma prevalence. Retaining the indicator and 
group scores allows policy makers to tailor interventions to the specific needs of 
vulnerable communities. This information can also help public health professionals create 
educational information/campaigns specific and most relevant to at-risk communities. 

It is important to note that there may be drivers of heat vulnerability that are not adequately 
captured within this HVI. This tool works as a first-order approximation of relative heat 
vulnerability throughout the state. When assessing vulnerability of a community, a user should 
consider unique community characteristics not captured by the selected indicators. Finally, while 
the ranking system indicates low to high vulnerability, low vulnerability HVI categories (1s and 
2s) do not indicate “no vulnerability.” These communities can still be subject to increased 
morbidity and mortality during an extreme heat event.  

 

Alternate HVI Development Methods  

HVIs can be developed in different ways and utilize different datasets. Presented within this 
documentation is the methodology to create a composite HVI by grouping and averaging select 
indicators. This methodology was selected for clearer stakeholder interpretation and for rapid 
updates as new data become available. Another common technique to generate HVIs is to utilize 
principal component analysis (PCA).10,11,14,17,20,23,47 PCA is technique that uses the covariance 
between the selected indicators to reduce a large dataset to a smaller number of components that 
represent the majority of variability of the dataset. PCA can generate derived indicator 
components from the data that aggregate indicators that vary similarly, but whose grouping may 
not be obvious. The two primary benefits of this technique are that it reduces the size of the 
dataset, facilitating scientific interpretation, and it reduces the effect of “double counting” 
indicators that may be measuring a similar phenomenon (such as median income and poverty 
rate). 23 

However, there are limitations to the PCA method that made a composite HVI (described above) 
more appropriate for this work. First, while employed in computer science and machine learning 
algorithms, PCA usage in this context requires a significant amount of researcher input for each 
iteration and each step. There are guidelines for the number of principal components to retain for 
analysis, but it is ultimately up to the researcher and can be arbitrary. PCA can be used on very 
large datasets, but to ensure that each indicator is well represented by the selected components, a 
smaller dataset of 11 to 17 indicators was found to be necessary in the development of the New 



Jersey HVI, limiting the inclusion of certain indicators (similar to Stafford and Abramowitz 
[2017] 47). Additionally, as the data are updated, the nature of each component can change, 
necessitating a reanalysis of the PCA methodology, the number of retained components, and 
reinterpretation of the components, and resultant HVI. This would limit the ability of the HVI to 
be easily and quickly updated an annual or biennial basis as new census and health data become 
available.  

Finally, each component of the PCA-generated HVI is a derived value, relating to multiple 
indicators. For planners and practitioners, it can be difficult to determine which indicators make 
their communities vulnerable when they are aggregated into principal components through a 
complex statistical technique. 48 The purpose of this HVI is to inform areas of greater 
vulnerability to extreme heat and also to allow the user to easily interpret which characteristics of 
each census tract contribute to that vulnerability. Therefore, the composite HVI index approach 
was selected for this effort.  

Another consideration in HVI development is weighting of the indicators. 48,49 Certain indicators, 
or indicator groups, may have a stronger impact on human health during an extreme heat event 
compared to others. In this case, weighting certain indicators in the HVI average could make a 
more accurate and representative final index. However, there is a lack of appropriate data to 
objectively weight each indicator by comparing the selected indicators to morbidity and 
mortality estimates during extreme heat events. Scientific and public health literature detailing an 
objectively weighted HVI approach are limited and often location specific. Another common 
weighting method is to utilize an external panel of experts to determine a general, and somewhat 
subjective, weighting scheme for the HVI, 49 but that effort is outside of the scope of this report 
and would still introduce a level of subjectivity into the weighting scheme. Instead, each 
indicator was weighted equally, which is common among many HVI 
methodologies.10,11,13,15,16,18,20–22   Averaging within each indicator group and equally weighting 
the groups in the final HVI calculation ensures that a group with more indicators in total (i.e., 
Sensitivity) did not dominate the HVI pattern.  

 

Spatial Distribution 

This section presents the geographic distribution of exposure, sensitivity, and adaptive capacity 
group scores and the final HVI score. Individual indicator scores are presented in the associated 
Microsoft Excel workbook and attribute data of the HVI Map layer.     

Exposure 

The regions with the highest exposure group scores (4s and 5s) are dominated by large urban 
centers to the northeast (Newark, Elizabeth, Jersey City) and southwest (Camden) (Figure 3). 
These areas have the highest percentage of impervious surface coverage compared to tree canopy 
cover and represent counties with poorer air quality in general. One caution when interpreting 
this map: many coastal areas along barrier islands are ranked as having moderate relative 
vulnerability to heat, designated by the number 3. The heat exposure experienced in coastal areas 



may be buffered by the effects of the ocean and ocean breezes 34, so it is important to consider 
these local conditions in analysis. The observed trend is primarily driven by a high impervious to 
canopy cover index along barrier island communities in New Jersey.   

 

Figure 3. Spatial distribution of the aggregate exposure score where 1 indicates a relatively low 
exposure score for a census tract and 5 indicates a high exposure score.  

Sensitivity 

The pattern of regions with greater sensitivity to high heat is somewhat harder to discern. Urban 
areas have some of the highest sensitivity to extreme heat (Figure 4), driven by older homes, a 
high prevalence of chronic diseases such as asthma, and a higher percentage of people living 
alone. There is also a discernable north-south trend, whereby northern areas outside of cities tend 
to be scored as less sensitive to extreme heat compared to southern regions. These higher 
sensitivity southern areas tend to coincide with a greater percentage of the population being over 
the age of 65, a higher disability rate, and higher rates of chronic illnesses.  



 

Figure 4. Spatial distribution of the aggregate sensitivity score where 1 indicates a relatively low 
sensitivity to extreme heat score for a census tract and 5 indicates a high sensitivity score. 

 

Adaptive Capacity 

Adaptive capacity is presented on a scale of 1 to 5 where 1 indicates a high adaptive capacity to 
extreme heat and climate perturbations (lower vulnerability) and 5 indicates a lower adaptive 
capacity (higher vulnerability). This directionality in scoring was selected to maintain 
consistency with other indicator groups whereby a higher number indicates greater vulnerability. 
Outside of highly urban areas such as Newark, Trenton, or Camden, the distribution of lower 
adaptive capacity does not follow a distinct regional trend (Figure 5). Urban areas have a much 
lower adaptive capacity (higher vulnerability score) across all adaptive capacity indicators, such 
as poverty rate or high nonwhite population, without much variation or few indicators 
dominating the trend.  

 



 

Figure 5. Spatial distribution of the aggregate adaptive capacity score where 1 indicates a 
relatively high adaptive capacity (low vulnerability) to extreme heat score for a census tract and 
5 indicates a low adaptive capacity (high vulnerability) score. 

 

Heat Vulnerability Index 

The HVI geography mirrors the trends observed in the indicator groups. The regions with the 
higher heat vulnerability scores were primarily urban areas, both those associated with larger 
metropolitan areas such as Newark, and smaller urban areas like Flemington, NJ (Figure 6). 
Outside of larger urban centers, the southern portion of the state appears to have a higher rate of 
3s and 4s (moderate to moderate-high vulnerability) compared to the northwest, likely following 
the north-south trend observed within the sensitivity component.  



 

Figure 6. Spatial distribution of the Heat Vulnerability Index where 1 indicates a relatively low 
calculated vulnerability to extreme heat for a census tract and 5 indicates high vulnerability. 

 

Limitations and Future Steps 

The development of the New Jersey HVI is primarily limited by availability of high-resolution 
health data and other social indicators to predict heat vulnerability. For example, access to air 
conditioning is extremely important during an extreme heat event, but such a dataset for the 
whole of the state is not available and had to be approximated by relative age of housing. The 
health data utilized in this HVI is not age adjusted at the census tract scale, so may introduce bias 
towards certain age groups with a typically higher incidence of certain illnesses, such as 
increased diabetes rates among older populations. In terms of exposure, county-level air quality 
data are included, but local-scale variations in air quality would be preferable when assessing 
localized vulnerability.  

The formulation of the HVI is also not appropriate for describing the vulnerability of census 
tracts with a high percentage of people living within group quarters, such as prison facilities, 
university dorms, or nursing homes. These locations require special consideration and often the 
selected indicators do not adequately represent these populations. For example, a prison 



population may be vulnerable to extreme heat due to crowding, a lack of air conditioning, and 
limited access to healthcare. 16,50 However, these parameters are not captured in the HVI and 
therefore census tracts with more than 90% of the population living within group quarters were 
not considered and are not included in data output. It is important to note that these locations 
may still be vulnerable to extreme heat, but the HVI as formulated is not an appropriate measure 
of vulnerability for locations with a high number of people living within group quarters. 
Additionally, census tracts with a population of zero (such as an airport) were not considered. 
Such locations may still present hazardous conditions for workers and people temporarily within 
these geographies, but the census information reflects residential characteristics. Therefore, these 
locations are not appropriate to include within the HVI.  

Finally, the indicators were selected by literature review of other published HVIs, not by 
comparing the prevalence of each indicator to health outcomes such as ED visits or mortality 
rates during high heat events. Ideally, each indicator would have been selected via a heat health 
outcome analysis to capture those indicators most important specifically to New Jersey. 
However, these data are unavailable at the resolution needed to establish reliable indicator and 
health outcome relationships. Lacking those data, it is important to understand that the selected 
indicators, while good representations of heat vulnerability in general, may not capture relevant 
all aspects of community heat vulnerability in New Jersey. Finally, the New Jersey HVI is a 
relative comparison of census tract vulnerability throughout the state and does quantify exact risk 
to a community from extreme heat. Despite these limitations, the New Jersey HVI represents a 
basis for local governments, health officials, and stakeholders to understand vulnerability to 
extreme heat within their communities and plan for future extreme heat with climate change.  

Subsequent iterations of the New Jersey HVI may be improved through incorporating an 
indicator weighting scheme. Equal weighting of the indicators and indicator groups was 
determined to be the best approach for this effort given an incomplete understanding of the heat 
vulnerability indicator and health outcome relationship. As extreme heat events become more 
prevalent with climate change and possibly a greater focus of public health initiatives, these 
relationships may become more well established in New Jersey, allowing for an objective 
weighting scheme. Additionally, as research improves, the selected indicators may be modified 
to better approximate the vulnerability to extreme heat of each community. Another potential 
improvement would be to adjust indicators to account where most of the population within a 
census tract resides, especially in larger/more rural tracts. Understanding the population 
distribution within the tract could better isolate the local air quality and heat island effects 
experienced by an average resident. This approach can offer a counterbalance to larger census 
tracts where there is high canopy cover, but the population is concentrated in a few locations 
with reduced cover.   
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Appendix A. List of indicators considered not incorporated into the heat vulnerability 
index  

Table A1. Indicators explored but not included in the heat vulnerability index  

Indicator Contribution to 
Vulnerability  Rationale for exclusion  

Percent of population that is: 
- Hispanic and/or 

Latino 
- Black 
- American Indian and 

Native Alaskan 
- Native Hawaiian and 

Pacific Islander 
- Asian 
- Other Race/Ethnicity 
- Two or more 

races/ethnicities 

Predominately non-white 
communities are subject to 
greater vulnerability to 
natural hazards, including 
extreme heat due to social 
inequities. 39,44  

Individual races and 
ethnicities were not included 
within the HVI as there is not 
specific indications for how 
each group is uniquely 
vulnerable to extreme heat 
within New Jersey. 
Additionally, diverse 
communities may necessitate 
an appropriate weighting 
scheme to accurately capture 
heat vulnerability, which is 
outside the scope of this 
effort.  Instead, following the 
literature, a larger category of 
“non-white” was considered. 

Percent of the population that 
is foreign born 

Foreign born people within 
communities may have 
language barriers and 
differing cultural context that 
may make emergency 
communication regarding 
extreme heat less effective. 11 
 

This category produced 
overlap and high correlation 
with other indicators such as 
percent “non-white” and 
percent speaking English less 
than “very well,” and was 
therefore excluded.  

Percent aged >65 and living 
alone 

Individuals over the age of 65 
are at an increased risk for 
heat related illnesses and 
especially if they have limited 
social connection 
(approximated by living 
alone). 10–13,15 
 

Conceptually, this indicator is 
a combination of the percent 
of the population aged >65 
and percent of population 
living alone indicators. 
Correlations between these 
indicators were not 
significant but the combined 
indicator was removed it was 
assumed to be redundant with 
the two separate indicators 
included in the HVI.  

Housing density  
Housing density can be an 
indicator of urbanization and 
crowded conditions that may 

This metric had high 
correlation with the 
Impervious Cover to Canopy 
Cover Index and conceptually 



increase exposure to extreme 
heat. 11,15 

captured the same exposure 
processes and was therefore 
not included.  

Percent of population with 
- Ambulatory 

difficulties 
- Cognitive difficulties 

Persons with mobility or 
cognitive difficulties may 
have greater difficulty 
responding and adapting to 
extreme heat. 14 

These metrics were assumed 
to be adequately captured in 
the percent of the population 
with a disability indicator, 
though correlations were 
insignificant.  

Percent of household with 
overcrowding (more 
individuals living in a 
housing unity than there are 
individual rooms) 

More people in enclosed 
spaces can increase indoor 
temperatures and worsen 
indoor air pollution. 16 

It was assumed that this 
indicator follows income 
level was not included as it 
was assumed to be 
conceptually captured by the 
percent of people living 
below the poverty line 
indicator and only one 
explored HVI utilized this 
metric.  

Percentage of population 
living in group quarters 

People living in group 
quarters such as prisons or 
nursing homes are inherently 
vulnerable to many hazards, 
including extreme heat due to 
lack of agency in building 
conditions and response. 16,50 

As mentioned in the 
limitations section, 
populations living in group 
quarters require special 
consideration, must be 
considered at different 
geographies (often the size of 
just the building), and the 
other metrics of vulnerability 
do not necessarily capture 
information regarding these 
populations. It was therefore 
removed form the analysis 
with the understanding that 
the formulation of the HVI is 
not suited to adequately 
measure the vulnerability of 
these populations.   

Percentage of single parent 
households 

Single parent households may 
have reduced financial 
capacity to respond to 
extreme heat. 16 
 

The proportion of single 
parent households only 
appeared in one of the 
reviewed HVIs and was 
therefore not included. 
Additionally, it was assumed 
that limited financial capacity 
would be adequately captured 
in the percent of the 



population living below the 
poverty line.  

Percent of housing units that 
are renter occupied  

Renters may be less well 
established within the 
community and are likely to 
have lower incomes than 
homeowners. 16 

The proportion of renter 
occupied housing only 
appeared in one of the 
reviewed HVIs and was 
therefore not included. 
Additionally, it was assumed 
that limited financial capacity 
would be adequately captured 
in the percent of the 
population living below the 
poverty line. 

Percent of households 
without internet access 

No internet access may limit 
the efficacy of extreme heat 
warnings and reduce 
awareness of resources for 
extreme heat. 16  

The proportion of households 
with internet access only 
appeared in one of the 
reviewed HVIs and was 
therefore not included. 
Additionally, it was assumed 
that limited financial capacity 
could impact internet access 
and would be adequately 
captured in the percent of the 
population living below the 
poverty line. 

Percent of tract area classified 
as high development  

Highly developed areas are 
likely to have more 
impervious surface area, 
heightening the urban heat 
island. 11–13 

This metric had high 
correlation with the 
Impervious Cover to Canopy 
Cover Index and conceptually 
captured the same exposure 
processes and was therefore 
not included.  

Crude prevalence of chronic 
obstructive pulmonary 
disease (COPD) 

COPD can be exacerbated 
during an extreme heat event. 
19  

COPD was found to correlate 
highly with prevalence of 
coronary heart disease and 
was not included to reduce 
the potential of “double 
counting” the indicators’ 
contribution the vulnerable 
communities.   

Crude prevalence of 
overweight and obesity  

Obesity is a known risk factor 
for heat related morbidity and 
mortality, and has been 
included in other, typically 
more health focused, HVIs. 
12,13,15,19 

The prevalence of overweight 
and obesity was found to 
correlate highly with 
prevalence of asthma and was 
not included to reduce the 
potential of “double 



counting” the indicators’ 
contribution the vulnerable 
communities.   

Median household income  

People with lower (greater) 
incomes and are associated 
with greater (lesser) 
vulnerability to heat stress 
and a limited capacity to 
adapt to and recover from 
extreme heat events. 16,20 

This indicator correlated 
highly with other indicators 
related to income, such as the 
percent of people living 
below the poverty line, which 
focuses more directly on 
financially vulnerable 
populations. As such, this 
indicator was not included. 

Population density 

High population density has 
been associated with higher 
ambient temperatures and 
more urbanicity, increasing 
exposure to extreme heat. 11–

13 

This metric had high 
correlation with the 
Impervious Cover to Canopy 
Cover Index and conceptually 
captured the same conceptual 
exposure processes and was 
therefore not included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B. Correlation Tables between Indicators and between Indicator Groups 

Table B1. Spearman Correlation Coefficients between Exposure Indicator Variables 

 
Impervious / 
canopy cover 

index 
Historical PM2.5 Historical O3 Summer 

temperatures 

Impervious / 
canopy cover 

index 
1    

Historical PM2.5 0.19 1   

Historical O3 0.11 0.43 1  

Summer 
temperatures 0.54 0.55 0.38 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table B2. Spearman Correlation Coefficients between Sensitivity Indicator Variables 

 
Percent 

aged 
>65 

Percent 
with a 

disability 

Housing 
built 

before 
1960 

Percent in 
outdoor 

occupations 

Percent 
aged <5 

Percent 
living 
alone 

Asthma 
prevalence 

Diabetes 
prevalence 

Coronary 
heart 

disease 
prevalence 

Percent aged 
>65 1         

Percent with 
a disability 0.00 1        

Housing 
built before 

1960 
-0.21 0.03 1       

Percent in 
outdoor 

occupations 
-0.27 0.49 0.27 1      

Percent aged 
<5 -0.43 0.05 0.21 0.28 1     

Percent 
living alone 0.27 0.30 -0.03 0.08 -0.08 1    

Asthma 
prevalence -0.23 0.59 0.18 0.71 0.23 0.19 1   

Diabetes 
prevalence 0.01 0.50 0.21 0.66 0.14 0.28 0.65 1  

Coronary 
heart disease 
prevalence 

0.42 0.45 0.11 0.43 -0.05 0.36 0.51 0.74 1 

* Bold text indicates non-significant correlations (p value > 0.05) 



Table B3. Spearman Correlation Coefficients between Adaptive Capacity Indicator Variables 

 

Percent below 
poverty line 

Percent 
unemployed 

Percent 
speaking 

English less 
than "Very 

Well" 

Percent 
without a high 
school degree 

Percent non-
white 

Percent 
without health 

insurance 

Percent below 
poverty line 1      

Percent 
unemployed 0.37 1     

Percent 
speaking 

English less 
than "Very 

Well" 

0.49 0.14 1    

Percent without 
a high school 

degree 
0.71 0.33 0.62 1   

Percent non-
white 0.59 0.34 0.77 0.66 1  

Percent without 
health insurance 0.69 0.34 0.66 0.72 0.65 1 

 

 



Table B4. Spearman Correlation Coefficients between Indicator Group Scores 

 

 Exposure Sensitivity Adaptive 
Capacity 

Exposure 1   

Sensitivity 0.23 1  

Adaptive 
Capacity 0.41 0.59 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


